The kinesin motor protein Kif7 is required for T-cell development and normal MHC expression on thymic epithelial cells (TEC) in the thymus

نویسندگان

  • Ching-In Lau
  • Alessandro Barbarulo
  • Anisha Solanki
  • José Ignacio Saldaña
  • Tessa Crompton
چکیده

Kif7 is a ciliary kinesin motor protein that regulates mammalian Hedgehog pathway activation through influencing structure of the primary cilium. Here we show that Kif7 is required for normal T-cell development, despite the fact that T-cells lack primary cilia. Analysis of Kif7-deficient thymus showed that Kif7-deficiency increases the early CD44+CD25+CD4-CD8- thymocyte progenitor population but reduces differentiation to CD4+CD8+ double positive (DP) cell. At the transition from DP to mature T-cell, Kif7-deficiency selectively delayed maturation to the CD8 lineage. Expression of CD5, which correlates with TCR signal strength, was reduced on DP and mature CD4 and CD8 cells, as a result of thymocyte-intrinsic Kif7-deficiency, and Kif7-deficient T-cells from radiation chimeras activated less efficiently when stimulated with anti-CD3 and anti-CD28 in vitro. Kif7-deficient thymocytes showed higher expression of the Hedgehog target gene Ptch1 than WT, but were less sensitive to treatment with recombinant Shh, and Kif7-deficient T-cell development was refractory to neutralisation of endogenous Hh proteins, indicating that Kif7-deficient thymocytes were unable to interpret changes in the Hedgehog signal. In addition, Kif7-deficiency reduced cell-surface MHCII expression on thymic epithelial cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Foxn1 is required to maintain the postnatal thymic microenvironment in a dosage-sensitive manner.

The postnatal thymus is the primary source of T cells in vertebrates, and many if not all stages of thymocyte development require interactions with thymic epithelial cells (TECs). The Foxn1 gene is a key regulator of TEC differentiation, and is required for multiple aspects of fetal TEC differentiation. Foxn1 is also expressed in the postnatal thymus, but its function after birth is unknown. We...

متن کامل

Hedgehog Signalling in the Embryonic Mouse Thymus

T cells develop in the thymus, which provides an essential environment for T cell fate specification, and for the differentiation of multipotent progenitor cells into major histocompatibility complex (MHC)-restricted, non-autoreactive T cells. Here we review the role of the Hedgehog signalling pathway in T cell development, thymic epithelial cell (TEC) development, and thymocyte-TEC cross-talk ...

متن کامل

mTORC1 in Thymic Epithelial Cells Is Critical for Thymopoiesis, T-Cell Generation, and Temporal Control of γδT17 Development and TCRγ/δ Recombination

Thymus is crucial for generation of a diverse repertoire of T cells essential for adaptive immunity. Although thymic epithelial cells (TECs) are crucial for thymopoiesis and T cell generation, how TEC development and function are controlled is poorly understood. We report here that mTOR complex 1 (mTORC1) in TECs plays critical roles in thymopoiesis and thymus function. Acute deletion of mTORC1...

متن کامل

Cell-Autonomous Defects in Thymic Epithelial Cells Disrupt Endothelial-Perivascular Cell Interactions in the Mouse Thymus

The thymus is composed of multiple stromal elements comprising specialized stromal microenvironments responsible for the development of self-tolerant and self-restricted T cells. Here, we investigated the ontogeny and maturation of the thymic vasculature. We show that endothelial cells initially enter the thymus at E13.5, with PDGFR-β(+) mesenchymal cells following at E14.5. Using an allelic se...

متن کامل

A Focused In Situ Hybridization Screen Identifies Candidate Transcriptional Regulators of Thymic Epithelial Cell Development and Function

BACKGROUND Thymic epithelial cells (TECs) are necessary for normal T cell development. Currently, one transcription factor, Foxn1 is known to be necessary for the progression of fetal TEC differentiation. However, some aspects of fetal TEC differentiation occur in Foxn1 mutants, suggesting the existence of additional transcriptional regulators of TEC differentiation. The goal of this study was ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2017